

浙江省地方计量技术规范

JJF(新) 1197-2023

液化天然气立式储罐容量校准规范

Calibration Specification for Capacity of Liquefied Natural
Gases Vertical Tanks

2023-04-17 发布

2023-07-17 实施

浙江省市场监督管理局 发布

液化天然气立式储罐容量 校准规范

Calibration Specification for Capacity

JJF(浙)1197—2023

of Liquefied Natural Gases Vertical Tanks

归口单位:浙江省市场监督管理局

主要起草单位: 舟山市质量技术监督检测研究院

通标标准技术服务有限公司

参加起草单位: 浙江海洋大学

新奥(舟山)液化天然气有限公司

本规范委托舟山市质量技术监督检测研究院负责解释

本规范主要起草人:

陈贤雷(舟山市质量技术监督检测研究院)

吴泽南(舟山市质量技术监督检测研究院)

李存军(舟山市质量技术监督检测研究院)

许惠中 (通标标准技术服务有限公司)

参加起草人:

郝华东(舟山市质量技术监督检测研究院)

施浩磊(舟山市质量技术监督检测研究院)

汪业勇(舟山市质量技术监督检测研究院)

陶亨聪 (浙江海洋大学)

洪炳沅 (浙江海洋大学)

王博弘 (浙江海洋大学)

何建辉(新奥(舟山)液化天然气有限公司)

王 斌 (新奥 (舟山) 液化天然气有限公司)

黎国红(通标标准技术服务有限公司)

目录

引言	II
1 范围	1
2 引用文件	1
3 术语和计量单位	1
4 概述	2
4.1 液化天然气立式储罐结构	2
4.2 液化天然气立式储罐校准原理	4
5 计量特性	5
5.1 容量测量结果的扩展不确定度	5
6 校准条件	5
6.1 环境条件	5
6.2 技术条件	6
6.3 安全条件	6
6.4 校准用标准器及配套设备	6
7 校准项目和校准方法	7
7.1 圆柱形液化天然气立式储罐测量项目和测量方法	7
7.2 棱柱形液化天然气立式储罐测量项目和测量方法	12
7.3 数据处理	13
7.4 容量表的编制	16
7.5 校准结果处理	17
附录 A 圆柱形储罐水平圆周测量数据处理方法	18
附录 B 棱柱形储罐横截面测量数据处理方法	23
附录 C 穹顶测量及数据处理方法	24
附录 D 校准记录参考格式	27
附录 E 校准证书内页格式	31
附录 F 容量表参考格式 (一)	33
附录 G 容量表参考格式(二)	35

引言

本规范依据 JJF 1071《国家计量校准规范编写规则》、JJF 1001《通用计量术语及定义》和 JJF 1059.1《测量不确定度评定与表示》的规定编写。使用本规范时,引用文件的最新版本(包括所有的修改草案)适用于本规范。

本技术规范为首次发布。

液化天然气立式储罐容量校准规范

1 范围

本规范适用于液化天然气立式储罐容量的校准,其他类似结构的立式储罐容量校准可参考本规范。

2 引用文件

JJG 168-2018 立式金属罐容量检定规程

GB/T 20368-2021 液化天然气(LNG)生产、储存和装运

GB/T 26978-2021 现场组装立式圆筒平底钢质低温液化气储罐的设计与建造

AQ 3028 化学品生产单位受限空间作业安全规范

凡是注日期的引用文件,仅注日期的版本适用于本规范;凡是不注日期的 引用文件,其最新版本(包括所有的修改单)适用于本规范。

3 术语

- 3.1 液化天然气立式储罐 liquefied natural gases vertical tank 用于储存液化天然气的立式罐的统称。
- 3.2 上计量基准面(液位计安装面) upper measurement datum 用于安装液位计的上法兰平面,同时也是液位计的上基准面。
- 3.3 下计量基准点 dipping point 通过上计量基准面的自由下垂线与罐底表面的交点。也称零点。
- 3.4 液位系统参考高度 reference height of liquid level system 下计量基准点到上计量基准面垂直距离。
- 3.5 最小测量容量 the smallest measurable volume

为了保证罐容量计量达到给定的测量不确定度,在收发作业时,所排出或 注入的最少液体体积。最小测量容量与给定的测量不确定度和液位系统最大允 许误差有关。

3.6 附件体积 deadwood volume

影响罐容量的装配附件所占的体积。当其体积使罐的有效容积增加时,取正值,当其体积使罐的有效容积减少时,取负值。

3.7 底量 bottom volume

罐底最高点水平面以下的容量。也称罐底容量。

3.8 死量 deadstock

下计量基准点水平面以下的容量。

3.9 参照水平面 reference level

在对罐底和罐内的附件的起止高度进行测量时,由水准仪视准轴水平旋转或激光扫平仪旋转扫描激光束形成的水平面。

3.10 标高 elevation

由水准仪或激光扫平仪和标高尺测量的某一点到参照水平面的高度,称为标高。

4 概述

4.1 液化天然气立式储罐结构

液化天然气立式储罐是用于储存液化天然气的立式储罐的统称,根据其几何形状可分为圆柱形液化天然气立式储罐(简称圆柱形储罐)和棱柱形液化天然气立式储罐(简称棱柱形储罐)。

4.1.1 圆柱形储罐结构

圆柱形储罐一般可以分为单容罐、双容罐和全容罐。

以全容罐为例,其结构如图 1 所示,是由具有液密性、气密性的次容器和建立在次容器之中的主容器共同组成的储罐,次容器为独立的自支撑带拱顶的闭式结构。在储罐正常操作条件下,主容器用于储存全部液体产品,次容器作为储罐的主要蒸发气容器,并支撑主容器的绝热层。

主容器为钢制内罐,其形状为圆柱形,内壁一般为含镍 9%的合金钢。天然气液相全部装存于钢制内罐,气相存在于穹顶与钢制内罐液相之间的空间内。

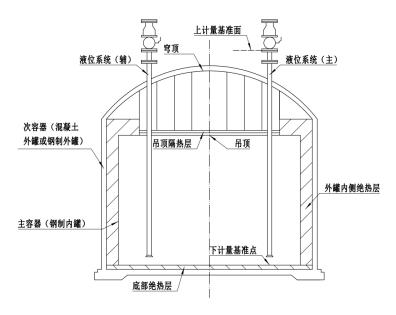


图 1 全容罐结构示意图

4.1.2 棱柱形储罐结构

棱柱形储罐一般为薄膜罐。

薄膜罐结构形式为由一个薄的钢质主容器(即薄膜)、绝热层和预应力混凝土罐体共同组成的能储存低温液体的复合结构。金属薄膜内罐为非自支撑式结构,用于储存低温液化气,其液相荷载和其他施加在金属薄膜上的荷载通过可承受荷载的绝热层全部传递到混凝土外罐上,其气相压力由储罐的顶部承受。

金属薄膜内罐的形状为棱柱形,其横截面为正多边形(如正 56 边形), 天然气液相全部装存于金属薄膜内罐,气相存在于穹顶与金属薄膜内罐液相之间的空间内。

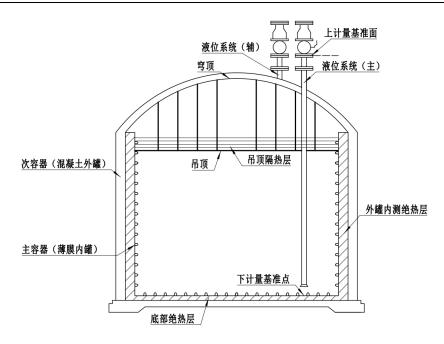


图 2 薄膜罐结构示意图

4.2 液化天然气立式储罐校准原理

4.2.1 圆柱形储罐校准原理

圆柱形储罐内罐罐体在理想状态下应是一竖直圆筒,分为若干层,从下至上依次称为第 1 圈板,第 2 圈板, \cdots ,第 n 圈板,则每圈板容量 V 为:

$$V_i = \frac{\pi}{4} d_i^2 h_i \times 10^{-6} \tag{1}$$

式中:

 V_i ——第i 圈板容量, dm^3

 d_i ——第i 圈板的内直径,mm;

 h_i ——第i圈板的内高,mm;

 $i = 1, 2, 3, \dots, n$ ——为圈板的序号;

若考虑液体静压力引起的罐壁弹性变形的修正值、罐内附件体积、罐底容量和罐体的倾斜修正等,则内罐的总容量V为:

$$V = \sum_{i=1}^{n} V_i + \Delta V_P + \Delta V_A + \Delta V_B + \Delta V_L$$
 (2)

式中:

 ΔV_{P} ——液体静压力容量修正值, dm^{3} ;

 ΔV_A ——罐内附件的体积, dm^3 ,当它的体积使罐的有效容量增加时, ΔV_A 为正值;反之,为负值;

 ΔV_{B} ——罐底容量, dm^{3} ;

 ΔV_{I} ——罐倾斜的修正值,dm³。

4.2.2 棱柱形储罐校准原理

将棱柱形储罐内罐分为若干层,从下至上依次计算各层 //,,其表示式为:

$$V_{i} = S_{i}h_{i} \tag{3}$$

式中:

 S_i ——第i层的面积, mm^2 ;

 h_i ——第i层的层高,mm;

i = 1,2,3,...n——为各层的序号;

若考虑罐内附件体积、罐底容量修正等,则内罐的总容量V为:

$$V = \sum_{i=1}^{n} V_i + \Delta V_A + \Delta V_B \tag{4}$$

式中:

 ΔV_A ——罐內附件的体积, dm^3 ,当它的体积使罐的有效容量增加时, ΔV_A 为正值;反之,为负值;

 ΔV_{p} ——罐底容量,dm³;

 V_i ——每层容量, dm^3 。

5 计量特性

5.1 容量测量结果的扩展不确定度

内罐(≥10000m³)总容量校准扩展不确定度通常不大于 0.1%(k=2)。

6 校准条件

6.1 环境条件

环境温度: -20℃~40℃; 相对湿度不大于 85%。

校准时罐内应无振动干扰源,涉及液位系统参考高度测量等罐外测量时, 应在非雨雪天气、风力不大于4级条件下进行。

6.2 技术条件

- 6.2.1 液位计导向管以及对容量计量有影响的相关附件应安装完毕。
- 6.2.2 对于圆柱形储罐,校准前应经过水压试验,水压试验应满足 GB/T 26978-2021 的要求。
- 6.2.3 对于殷瓦钢薄膜罐,校准前应抽主次绝缘层至负压-0.05Mpa,使薄膜紧贴罐壁。

6.3 安全条件

校准人员应了解并遵守现场的安全规定,穿着工作服、防护鞋,佩戴手套和安全帽,并根据现场实际情况佩戴其他防护用品开展校准工作,避免交叉作业。

校准人员进入受限空间作业前,需办理受限空间作业许可证,检查受限空间相连接阀门、管线隔离情况,确保受限空间氧含量、有毒气体(物质)浓度、可燃气体浓度含量等应满足 AQ 3028 的要求。校准人员进入受限空间开展校准工作时需全程携带便携式气体报警仪。

6.4 校准用标准器及配套设备

校准用标准器及配套设备主要技术参数见表1和表2。

设备名称 测量范围 准确度等级或最大允许误差 备注 测角准确度等级: 不低于 I 级 全站仪 (1.7~80) m 根据测量方 测距准确度等级: 不低于II级 法,可选配 测角最大允许误差: ±20" 其中一种作 三维激光扫描仪 $(0.6\sim50)$ m 测距最大允许误差: ± (2+10×10-6L) mm 为标准器 (*L* 为测量距离) $(0\sim100)$ m 钢卷尺 II级 (0~30) m MPE: ± 2.0 mm 使用时进行 测深钢卷尺 (0~50) m MPE: ± 3.0 mm 修正 激光测距仪 $(0.5\sim100) \text{ m}$ 0级 自动安平水准仪 (1~100) m DSZ3 级及以上 根据底量测 量方法选配 激光扫平仪 (1~50) m MPE: $\pm 20^{\prime\prime}$ \leq 10mm, \pm 0.1mm; >10mm , \pm (0.1+1% 测厚仪 (0~50) mm L)mm(L 为测量厚度)

表 1 校准用标准器技术参数表

表 2 校准用配套设备技术参数表

设备名称	型号规格/测量范围	备注		
标高尺	(0~2) m	最小分度值 1mm,根据底量测量方法		
	/	根据底量测量方法选配		
便携式气体报警仪		满足一氧化碳、硫化氢、氧气和可燃		
区1957 (175)区目区	,	最小分度值 1mm,根据底量测量方法 选配 根据底量测量方法选配		
辐射温度计	(-10∼50) °C	最大允许误差: ±1.0℃		
河河南江	(-20~50)°C	最大允许误差: ±1.0℃		
温湿度计	(10~90)%RH	±7%RH		
空盒气压表	(800-1060)hPa	最大允许误差: ±2hPa		
防爆灯具		满足要求		
对讲机		满足要求		
安全带		满足要求		
三脚架		满足要求		
防毒面具		满足要求		
数据处理软件		满足本规范的计算要求		

7 校准项目和校准方法

校准项目见表3。

表 3 校准项目一览表

校准项目	圆柱形储罐测量	棱柱形储罐测量
圆柱面测量	+	1
棱柱面的测量	-	+
各圈板高度、板厚测量	+	1
罐底测量	+	+
罐体倾斜测量	+	_
液位系统参考高度测量	+	+
穹顶测量	+	+
罐内附件测量	+	+
注: "+"表示应校准项目, "-"表	示不需校准项目	

7.1 圆柱形储罐测量项目和测量方法

7.1.1 圆柱面测量

圆柱面的测量主要采用全站仪法或三维激光扫描法对罐体圆柱面圈板 1/4、3/4 处水平圆周或整体进行扫描测量。

- 7.1.1.1 全站仪法测量罐体水平圆周半径
- a) 经长途运输或较长时间使用之后,如对全站仪计量精度存疑,应对全站 仪开展现场自校后投入后续测量工作,现场自校方法可参考 JJG 168-2018《立 式金属罐容量检定规程》;
- b) 在罐内靠近圆心位置架设全站仪, 仪器架设高度以便于人员操作为宜。 应采取有效措施保证仪器三脚架安置的稳定性, 防止滑动和倾倒;
- c) 等待仪器与周围环境温度条件平衡,每次温度条件平衡适应时间不宜少于 15min:
- d) 打开仪器电源开关,利用电子水准器整平仪器,激活仪器倾斜自动补偿功能,然后在仪器操作界面中输入罐内大气的温度和气压;
- e) 选取某一母线,利用光电测量仪器观测各圈板水平焊缝上下之间的高差,测定各圈板高度:
- f) 在与全站仪基本同高的某一罐壁位置,设置一个稳固的棱镜或平板十字 丝归零检核目标,照准目标获取该点坐标:
- g) 采用手动或全站仪机载软件自动控制的方式,测量各圈板 1/4、3/4 处罐壁点坐标,使每层测点均匀分布确定测量点数,应保证相邻水平测点的弧长不得超过 3m:
- h) 采用全站仪机载软件自动控制测量时,宜合理设置水平度盘零位,以便 躲避罐内立管等附件对激光测距的影响,如遇到障碍物时可以选择跳过该点, 并在测量完成后对该位置进行补点测量:
- i) 完成每一水平圆周扫描测量之后,光电测量仪器照准归零检核目标,两次测量值应不大于 2.0mm,当仪器架设在非常稳定的底板处时,也可在完成所有水平圆周扫描后,照准归零检核目标,两次测量的坐标距离应不大于 2.0mm;
- j) 采用辐射温度计对罐壁每一圈板 1/2 位置温度测量,单独对每一圈板水平圆周半径进行温度修正。

7.1.1.2 三维激光扫描法测量罐体水平圆周半径

- a) 经长途运输或较长时间使用之后,应对三维激光扫描仪开展现场自校后 投入后续测量工作,现场自校可根据设备厂商提供的自校方法进行;
- b) 在罐底靠近圆心位置且相对稳定的位置架设三维激光扫描仪, 仪器架设高度以方便人员操作为宜;
- c) 等待仪器与周围环境温度条件平衡,每次温度条件平衡适应时间不宜少于 15min:
- d) 打开仪器电源开关,整平仪器,通过扫描仪自带的电子水准器观察扫描 仪水平程度,使其处于自动水平补偿范围内;
- e) 设置扫描参数。设置扫描分辨率等级、扫描质量等级、扫描范围等参数,确保扫描得到完整被测罐轮廓;
 - f) 开始扫描, 在扫描过程中应避免人员走动;
- g) 采用辐射温度计对罐壁每一圈板 1/2 位置温度测量,单独对每一圈板进行温度修正。

7.1.2 各圈板高度、板厚测量

各圈板板厚测量:采用超声波测厚仪对各圈板板厚进行测量,在同一圈板测量不少于两次,精确到 0.1mm,取平均值作为该圈板的厚度。当板厚无法测量时可采用竣工图纸的数据。

各圈板高度测量: (1) 采用全站仪法测量时,选取对称的四条母线,利用全站仪观测各圈板水平焊缝上下之间的高差,测定各圈板高度,取四次测量平均值作为各圈板高度。(2) 采用三维激光扫描法测量时,在数据处理软件上直接量取对称的四个方位各圈板水平焊缝上下之间的高差,取四次测量平均值作为各圈板高度。

7.1.3 罐底测量

7.1.3.1 测量点的确定

如图 3(a)所示,测量点是在罐底上确定同心圆(I、II、III......m)和半径(0-1,0-2.....0-n,n——半径方向测量条数)的交点的位置。测量点的数目由罐的直

径大小确定,一般情况下测量点数见表 4,同心圆到罐底中心的距离按照所分圆环面积相等的条件来确定,各圆环的半径按以下公式计算:

$$R_{I} = R\sqrt{1/m}$$

$$R_{II} = R\sqrt{2/m}$$

$$\bullet$$

$$\bullet$$

$$R_{m-1} = R\sqrt{(m-1)/m}$$

$$R_{m} = R$$

$$(5)$$

式中:

R——第一圈板内半径, mm;

m——等分圆环的数量。

基圆直径(m) m n

D≤30 8 8

30< D≤60 8 16

D>60 16 16

表 4 罐底测量点数量

7.1.3.2 测量点标高测量

(a) 水准仪测量标高

如图 3(b)所示,将水准仪架设在罐底靠近中心的稳定点上,用标高尺逐一直立于各测量点、罐底中心点和下计量基准点上,由水准仪读出标尺的读数,记录各测量点的标高。

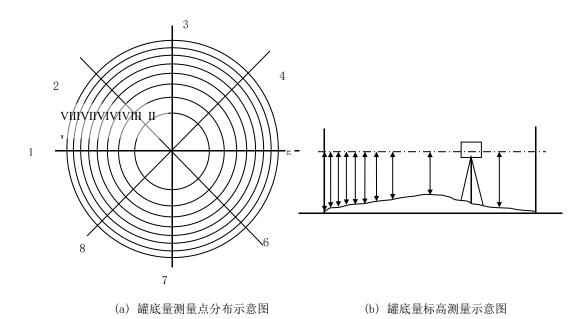


图 3 罐底量测量示意图

(b) 激光扫平仪测量标高

将激光扫平仪设在罐底靠近中心的稳定点上,用标高尺逐一直立于各测量点、罐底中心点和下计量基准点上,在标尺上读取激光线中心处标尺的刻度,连续读两次,两次读数差不超过 1mm,取平均值作为记录各测量点的标高(参考图 3(b))。

(c) 全站仪测量标高

将全站仪架设在罐底靠近中心的稳定点上,用对中杆逐一直立于各测量 点、罐底中心点和下计量基准点上,由全站仪通过搜索棱镜功能读出每个点位 置的数据,从而计算出所有标高点位置的数据。

7.1.4 罐体倾斜测量

罐体倾斜是指罐的中轴线偏离铅垂线的角度,通过全站仪或三维激光扫描 仪罐体坐标数据,计算各圈板水平圆的圆心坐标,通过比较立式罐圈板最下层 实测水平圆圆心坐标与最上层实测水平圆圆心坐标之差,即可求解立式罐的倾 斜度。

7.1.5 液位系统参考高度测量

7.1.5.1 将液位计导向管用于安装液位计的上法兰圆 4 等分并标记等分点,将测深钢卷尺尺锤放入液位计导向管中,使尺带沿等分点缓慢放下,当尺锤顶部刚

好接触到下计量基准点(或液位计导向管下挡板),并确认尺锤直立,此时读取液位计导向管上法兰盘上沿所对应的尺带刻度,收起尺带再次测量并读数,两次读数差值不超过 1mm 的,以第一次读数为测量值。取 4 个等分点平均值作为液位系统参考高度。

- 7.1.5.2 当液位计导向管有下挡板时,通过 7.1.5.1 方法测得值应加上挡板上沿至罐底之间距离作为液位系统参考高度。
- 7.1.5.3 当无法采用测深钢卷尺测量时也可采用激光测距仪测量,测量时可将激光测距仪放置在下计量基准点上,测量下计量基准点至上计量基准面的距离, 多次测量,当连续两次读数差值不超过 1mm 时,取第一次读数为测量值。

7.1.6 穹顶测量

穹顶测量方法见附录 C。

7.1.7 罐内附件测量

罐内附件一般具有规则的几何形状,测量出其几何尺寸,即可求出其体积。同时还需确定各附件的起点高度和止点高度,即测量各附件的最低点和最高点到下计量基准点所在平面的标高差。对于不能实际测量的附件,也可采用竣工图纸标注的数据。

- 7.2 棱柱形储罐测量项目和测量方法
- 7.2.1 棱柱面的测量
- 7.2.1.1 全站仪法测量罐体棱柱面
- a)等待仪器与周围环境温度条件平衡,将全站仪仪器架设在罐内测量中心位置,并调节水平:
- b) 在与全站仪基本同高的某一罐壁位置,设置一个稳固的棱镜或平板十字 丝归零检核目标,照准目标获取该点坐标:
- c)将罐体分为若干层,每层层高不大于 3m,采用全站仪测量每层中心位置横截面正多边形各边的点坐标,每条边测量不少于 5 个点,测量时,;
- d) 完成一个横截面正多边形各边的点坐标,全站仪再次照准检核目标,两次测量的坐标距离应不大于 2.0mm,即可进行下一个棱柱面的测量;
 - e) 重复上述步骤, 完成所有点坐标的测量:

- f) 采用辐射温度计测量各层温度,取平均值作为修正的温度;
- 7.2.1.2 三维激光扫描法测量罐体棱柱面

参照 7.1.1.2 的方法测量罐体。

- 7.2.2 罐底测量
- 7.2.2.1 测量点的确定

参考 7.1.3.1 确定测量点数量和位置,测量条数 n 和等分圆环的数量 m 根据棱柱外接圆直径大小计算。

7.2.2.2 测量点标高测量

参考 7.1.3.2 对测量点标高测量进行测量。

7.2.3 液位系统参考高度测量

液位系统参考高度测量参考 7.1.5。

7.2.4 穹顶测量

穹顶测量方法见附录 C。

7.2.5 罐内附件测量

罐内附件测量参考 7.1.7。

- 7.3 数据处理
- 7.3.1 圆柱面测量数据处理方法

全站仪或三维激光扫描仪测得的罐体圆周,需进行计算软件分析处理后方可使用(见附录 A)。三维激光扫描法测得到数据计算水平圆周半径时,应按圈板将点云分层,每圈板分层不少于 2 层,用于计算半径的每层点云厚度宜为5cm,将测量平均值作为该层半径计算值。

7.3.2 棱柱面测量数据处理方法

棱柱面测量数据处理方法见附录 B。

7.3.3 底量计算

其罐底最高点以下容量按下式计算:

$$\Delta V_{B} = \frac{\pi d^{2}}{4} \times \left\{ \frac{1}{3mn} \sum_{i=1}^{n} F_{0}(h_{d}, B_{0,i}, B_{\pm}) + \frac{7}{6mn} \sum_{i=1}^{n} F_{1}(h_{d}, B_{1,i}, B_{\pm}) + \frac{1}{mn} \sum_{i=1}^{n} F_{2}(h_{d}, B_{2,i}, B_{\pm}) + \frac{1}{mn} \sum_{i=1}^{n} F_{m-1}(h_{d}, B_{m-1,i}, B_{\pm}) + \frac{1}{2mn} \sum_{i=1}^{n} F_{m}(h_{d}, B_{m,i}, B_{\pm}) \right\} \times 10^{-6}$$
(6)

式中:

 $\Delta V_{\rm B}$ ——罐底容量,为高度 h_d 的函数, dm^3 ;

 h_d ——编制底量容量表的高度(区间为下计量基准点至罐底最高点), mm;

d——第一圈板内直径, mm;

 $B_{0,i}$ 、 $B_{1,i}$ 、.......B_{m,i}——各测量点标高,mm;

 B_{*} ——下计量基准点标高,mm;

 $F(h_d, B_{m,i}, B_{\pm})$ ——自定义函数, 定义如下:

$$F(h_d, B_{m,i}, B_{\pm}) = \begin{cases} B_{m,i} + h_d - B_{\pm} & (B_{m,i} + h_d > B_{\pm}) \\ 0 & (B_{m,i} + h_d \leq B_{\pm}) \end{cases}$$

注:

- (1) 当下计量基准点高于或等于罐底最高点时,令 $h_d=0$ 得到死量。
- (2) 当下计量基准点低于罐底最高点时,令 h_d 等于下计量基准点至罐底最高点高度时得到罐底容量; h_d 在区间高度内分别取值,代入公式计算得到不同高度下的罐底量容量表。

7.3.4 罐体倾斜容量修正的计算

7.3.4.1 倾斜角(β)的计算:

设圈板最上层实测水平圆圆心与最下层实测水平圆圆心平面坐标之差分别为:

$$dx = x_{\perp} - x_{\overline{\vdash}} dy = y_{\perp} - y_{\overline{\vdash}}$$
 (7)

则罐的倾斜角(β)为:

$$\beta = \arctan(\frac{\sqrt{dx^2 + dy^2}}{dH}) \tag{8}$$

以上各式中:

 (x_{\perp},y_{\perp}) —— 为立式罐最上层实测水平圆圆心点平面坐标,mm;

 (x_{τ},y_{τ}) — 为立式罐最下层实测水平圆圆心点平面坐标,mm;

dH — 为立式罐最上层实测水平圆和最下层实测水平圆之间的垂直高差, mm。

7.3.4.2 罐体倾斜容量修正ΔVL的计算:

$$\Delta V_L = \frac{\pi}{4} d^2 (\frac{1}{\cos \beta} - 1) h \times 10^{-6}$$
 (9)

式中:

 ΔV_L ——罐体倾斜容量修正值, dm^3 ;

d——罐的基圆内直径, mm:

h——编制容量表的高度, mm 。

7.3.5 静压力容量修正计算:

$$\Delta V_P = Kh^2 \tag{10}$$

式中:

$$K = \frac{\pi g(\rho - 0.0011)d^{3}}{8E\delta} \times 10^{-4}$$

 $\Delta V_{\rm P}$ ——液体充到 h 高度时静压力容量修正值, dm^3 ;

h——编制容量表的高度, m;

g——重力加速度,g=9.80665m/s²;

 ρ ——罐内液体平均密度,g/cm³;

d——罐的基圆内直径, mm;

E——圈板钢材的弹性模量, 9Ni 钢弹性模量 $E=2.00\times10^7$ N/cm²;

$$\delta$$
——罐壁的平均钢板厚度, $\delta = \frac{\sum\limits_{1}^{n}h_{i}\delta_{i}}{\sum\limits_{1}^{n}h_{i}}$, mm;

 h_i ——第 i 圈板的内高,mm;

 δ_{i} 一第 i 圈板平均钢板厚度,mm。

注:棱柱形储罐液相荷载通过可承受荷载的隔热层全部传递到混凝土外罐上,因此不进行静压力容量修正。

7.3.6 穹顶的计算

穹顶计算方法见附录 C。

7.3.7 罐内附件的体积 $\Delta V_{\rm A}$ 计算

罐内附件体积按几何形状计算,在编制容量表时,应在其起点高度 H_a 与止点高度 H_b 之间平均扣除,当它的体积使罐的有效容量增加时,则应平均增加。

罐内附件的起止点高度用下式计算

起点高度:
$$H_a=B_{\#}-B_{\#}$$
 (11)

止点高度:
$$H_b=B_{\pm}-B_{\perp}$$
 (12)

式中:

 B_{*} ——下计量基准点处标高, mm;

 $B_{\mathbb{R}}$ ——附件起点标高,mm;

 B_{\perp} ——附件止点标高,mm;

7.3.8 校准记录格式参见附录 D。

7.3.9 最小测量容量

为了保证罐容量计量达到给定的测量不确定度,所排出或注入的最少液体体积不应小于最小测量容量 V_{\min} 。罐的最小测量高度 h_{\min} 是指最小测量容量相应的液体高度,应满足:

$$\frac{\Delta V}{V_{\min}} = \frac{S\Delta h}{Sh_{\min}} = \frac{\Delta h}{h_{\min}} \le U_{\text{rel}}$$
(13)

即:

$$h_{\min} \ge \frac{\Delta h}{U_{\min}} \tag{14}$$

式中:

 Δh ——液位计最大允许误差,mm:

S——罐的横截面积, mm^2 ;

7.4 容量表的编制

容量表的高度最小分度为 mm,容量最小分度为 dm³(L)。容量表的起点高度一般为零点,对应的容量为死量,但液位计有测量盲区时,容量表也可从液 16

位计的最小高度作为容量表的起点,但该液位以下高度只作为参考,不作计量使用。静压力容量修正表应按 1g/cm³ 或设计密度的液体单独编制,使用时按实际密度进行修正,也可把静压力修正值根据实际使用密度直接修正到容量表中。容量表应修正至 LNG 罐设计工作温度下。

7.5 校准结果处理

经校准出具校准证书和容量表。校准证书内页及容量表格式见附录 $E \times F \times G$ 。

附录 A 圆柱形储罐水平圆周测量数据处理方法

A.1 水平圆周半径计算方法一(迭代逼近法原理)

根据同一水平圆周上测量目标点的平面坐标,可按以下迭代逼近法原理计算该水平圆的半径。

第1步:

$$\begin{cases} r_{1} = (1/n) \sum_{i=1}^{n} \sqrt{(x_{i} - a_{0})^{2} + (y_{i} - b_{0})^{2}} \\ a_{1} = (1/n) [\sum_{i=1}^{n} x_{i} - r_{1} \sum_{i=1}^{n} (x_{i} - a_{0}) / d_{i}] \\ b_{1} = (1/n) [\sum_{i=1}^{n} y_{i} - r_{1} \sum_{i=1}^{n} (y_{i} - b_{0}) / d_{i}] \end{cases}$$
(A.1)

式中:

$$d_i = \sqrt{(x_i - a_0)^2 + (y_i - b_0)^2}$$

第2步

$$\begin{cases} r_2 = (1/n) \sum_{i=1}^n \sqrt{(x_i - a_1)^2 + (y_i - b_1)^2} \\ a_2 = (1/n) [\sum_{i=1}^n x_i - r_2 \sum_{i=1}^n (x_i - a_1)/d_i] \\ b_2 = (1/n) [\sum_{i=1}^n y_i - r_2 \sum_{i=1}^n (y_i - b_1)/d_i] \end{cases}$$
(A.2)

式中:

$$d_i = \sqrt{(x_i - a_1)^2 + (y_i - b_1)^2}$$

第 m-1 步

$$\begin{cases}
r_{m-1} = (1/n) \sum_{i=1}^{n} \sqrt{(x_i - a_{m-2})^2 + (y_i - b_{m-2})^2} \\
a_{m-1} = (1/n) \left[\sum_{i=1}^{n} x_i - r_{m-1} \sum_{i=1}^{n} (x_i - a_{m-2}) / d_i \right] \\
b_{m-1} = (1/n) \left[\sum_{i=1}^{n} y_i - r_{m-1} \sum_{i=1}^{n} (y_i - b_{m-2}) / d_i \right]
\end{cases}$$
(A.3)

式中:

$$d_i = \sqrt{(x_i - a_{m-2})^2 + (y_i - b_{m-2})^2}$$

第m步

$$\begin{cases} r_{m} = (1/n) \sum_{i=1}^{n} \sqrt{(x_{i} - a_{m-1})^{2} + (y_{i} - b_{m-1})^{2}} \\ a_{m} = (1/n) \left[\sum_{i=1}^{n} x_{i} - r_{m} \sum_{i=1}^{n} (x_{i} - a_{m-1}) / d_{i} \right] \\ b_{m} = (1/n) \left[\sum_{i=1}^{n} y_{i} - r_{m} \sum_{i=1}^{n} (y_{i} - b_{m-1}) / d_{i} \right] \end{cases}$$
(A.4)

式中:

$$d_i = \sqrt{(x_i - a_{m-1})^2 + (y_i - b_{m-1})^2}$$

以上各式中:

 x_i —— 水平圆周上第 i 号测量目标点的 x 坐标,mm, i = 1,2,3,...n;

 y_i — 水平圆周上第 i 号测量目标点的 y 坐标,mm, i = 1,2,3,...n;

 a_0 — 水平圆圆心坐标 x 的初始值(一般设为 0), mm;

 b_0 — 水平圆圆心坐标y的初始值(一般设为0),mm;

 d_i — 水平圆周上第 i 号测量目标点到圆心的距离,mm, i = 1,2,3,...n;

n—— 水平圆周上测量目标的总点数;

 $r_1 \sim r_m$ — 第 1 步到第 m 步水平圆半径计算结果,mm;

 $a_1 \sim a_m$ — 第 1 步到第 m 步水平圆圆心坐标 x 的计算结果,mm;

 $b_1 \sim b_m$ — 第 1 步到第 m 步水平圆圆心坐标 y 的计算结果,mm;

当连续两次计算的半径之差的绝对值 $|r_m-r_{m-1}| \le 0.01$ mm 和连续两次计算的 圆心坐标距离 $\sqrt{(a_m-a_{m-1})^2+(b_m-b_{m-1})^2} \le 0.01$ mm 时,停止上述迭代计算,并以最后的半径计算结果 r_m 为所求的水平圆周半径。

A.2 水平圆周半径方法二(最小二乘法拟合圆)

根据同一水平圆周上测量目标点的平面坐标,可以按最小二乘法拟合圆。在二维平面坐标系中,圆方程可以表示为:

$$r^{2} = (x - x_{0})^{2} + (y - y_{0})^{2}$$
(A.5)

$$\lim_{N \to \infty} r^2 = x^2 - 2xx_0 + x_0^2 + y^2 - 2yy_0 + y_0^2$$
(A.6)

令 $a = -2x_0$, $b = -2y_0$, $c = x_0^2 + y_0^2 - r^2$ 则点 (x_i, y_i) 到圆的边缘的距离的平方与半径的平方的差为:

$$\delta_i = d_i^2 - r^2 = (x_i - x_0)^2 + (y_i - y_0)^2 - r^2 = x_i^2 + y_i^2 + ax_i + by_i + c$$
 (A.7)

令 f(a,b,c) 为 δ_i 的平方和:

$$f(a,b,c) = \sum \delta_i^2 = \sum \left[\left(x_i^2 + y_i^2 + ax_i + by_i + c \right) \right]^2$$
 (A.8)

f(a,b,c)对a,b,c求偏导,并令偏导等于0,得到极值点

$$\frac{\partial f(a,b,c)}{\partial a} = \sum 2(x_i^2 + y_i^2 + ax_i + by_i + c)x_i = 0$$
(A.9)

$$\frac{\partial f(a,b,c)}{\partial b} = \sum 2(x_i^2 + y_i^2 + ax_i + by_i + c)y_i = 0$$
(A.10)

$$\frac{\partial f(a,b,c)}{\partial c} = \sum 2(x_i^2 + y_i^2 + ax_i + by_i + c) = 0$$
 (A.11)

 $(A.9) \times n - (A.11) \times \sum x_i$ 得:

$$n\sum (x_i^2 + y_i^2 + ax_i + by_i + c)x_i - \sum (x_i^2 + y_i^2 + ax_i + by_i + c) \times \sum x_i = 0$$
 (A.12)

$$n\sum_{i}(x_{i}^{2}+y_{i}^{2}+ax_{i}+by_{i})x_{i}-\sum_{i}(x_{i}^{2}+y_{i}^{2}+ax_{i}+by_{i})\times\sum_{i}x_{i}=0$$
(A.13)

$$(n\sum x_i^2 - \sum x_i \sum x_i) a + (n\sum x_i y_i - \sum x_i \sum y_i) b + n\sum x_i^3 + n\sum x_i y_i^2 - \sum (x_i^2 + y_i^2) \sum x_i = 0$$
(A.14)

$$(A.10) \times n - (A.11) \times \sum y_i$$
 得:

$$n\sum (x_i^2 + y_i^2 + ax_i + by_i + c)y_i - \sum (x_i^2 + y_i^2 + ax_i + by_i + c) \times \sum y_i = 0 \quad (A.15)$$

$$n\sum (x_i^2 + y_i^2 + ax_i + by_i)y_i - \sum (x_i^2 + y_i^2 + ax_i + by_i) \times \sum y_i = 0$$
 (A.16)

$$(n\sum x_{i}y_{i} - \sum x_{i}\sum y_{i})a + (n\sum y_{i}^{2} - \sum y_{i}\sum y_{i})b + n\sum x_{i}^{2}y_{i} + n\sum y_{i}^{3} - \sum (x_{i}^{2} + y_{i}^{2})\sum y_{i} = 0$$
(A.17)

$$\begin{cases} K_{1} = n \sum x_{i}^{2} - \sum x_{i} \sum x_{i} \\ K_{2} = n \sum x_{i} y_{i} - \sum x_{i} \sum y_{i} \\ K_{3} = n \sum x_{i}^{3} + n \sum x_{i} y_{i}^{2} - \sum (x_{i}^{2} + y_{i}^{2}) \sum x_{i}$$
 可得:
$$K_{4} = n \sum y_{i}^{2} - \sum y_{i} \sum y_{i} \\ K_{5} = n \sum x_{i}^{2} y_{i} + n \sum y_{i}^{3} - \sum (x_{i}^{2} + y_{i}^{2}) \sum y_{i} \\ K_{1}a + K_{2}b + K_{3} = 0 , K_{2}a + K_{4}b + K_{5} = 0 \end{cases}$$
(A.18)

$$\text{III: } a = \frac{K_2 K_5 - K_3 K_4}{K_1 K_4 - K_2^2} \text{, } b = \frac{K_1 K_5 - K_2 K_3}{K_2^2 - K_1 K_4} \text{, } c = -\frac{\sum \left(x_i^2 + y_i^2\right) + a \sum x_i + b \sum y_i}{n}$$

得 x_0 , y_0 , r 的估计拟合值:

$$x_0 = -\frac{a}{2}$$
, $y_0 = -\frac{b}{2}$, $r = \frac{1}{2}\sqrt{a^2 + b^2 - 4c}$

以上各式中:

 x_i — 水平圆周上第 i 号测量目标点的 x 坐标,mm, i=1,2,3,...n;

 y_i — 水平圆周上第 i 号测量目标点的 y 坐标,mm, i = 1,2,3,...n;

 x_0 — 水平圆圆心坐标 x 的估计拟合值, mm;

 y_0 — 水平圆圆心坐标y的估计拟合值, mm;

r—— 水平圆半径的估计拟合值, mm;

 d_i — 水平圆周上第 i 号测量目标点到圆心的距离,mm, i = 1,2,3,...n;

A.3 水平圆周半径的温度修正

经过数据处理后计算的每一水平圆周半径需要按照测量时罐体钢板的温度修正到液化天然气储罐设计工作温度下(如-163°C),如(A.19)式。

$$r_{.163} = r[1 + \alpha(-163 - t)]$$
 (A.19)

式中:

r—— 为全站仪测量时实际温度条件下得到的半径, mm;

 α — 钢板的线膨胀系数, ${}^{0}C^{-1}$;

t—— 全站仪测量时罐壁的温度, ${}^{\circ}C$ 。

注: 如果钢板的线膨胀系数不是线性的,则按照提供的膨胀系数分段修正。

A.4 数据验证

验证数据:某一圈板测量点坐标数据如表 A.1 所示,根据上述算法计算,本圈板拟合半径为 41.99579m。

VIII ZEXIIV								
点号	X (m)	Y (m)	点号	X (m)	Y (m)	点号	X (m)	Y (m)
1	41.4833	-15.4295	25	-6.6188	39.1557	49	-29.8454	-29.8066
2	42.4827	-11.9049	26	-10.174	38.2668	50	-27.2998	-32.443
3	43.1815	-8.3088	27	-13.6447	37.0922	51	-24.5321	-34.8438
4	43.5985	-4.6705	28	-16.9918	35.5992	52	-21.5709	-37.0013
5	43.6458	-1.0066	29	-20.1871	33.8074	53	-18.4337	-38.8936
6	43.3923	2.647	30	-23.227	31.7658	54	-15.1492	-40.5201
7	42.8226	6.2646	31	-26.0831	29.4733	55	-11.729	-41.8367
8	41.9123	9.8123	32	-28.707	26.9195	56	-8.2084	-42.8521
9	40.7499	13.2814	33	-31.1347	24.1776	57	-4.612	-43.5597
10	39.2868	16.6367	34	-33.2981	21.221	58	-0.9686	-43.9543
11	37.5114	19.8406	35	-35.1871	18.0826	59	2.6956	-44.0217
12	35.479	22.8871	36	-36.806	14.7958	60	9.9717	-43.2035
13	33.1867	25.7443	37	-38.1171	11.3751	61	13.5264	-42.3159
14	30.6323	28.3715	38	-39.1296	7.8553	62	16.9972	-41.1394
15	27.8717	30.7781	39	-39.8463	4.2622	63	20.3462	-39.6525
16	24.9283	32.9572	40	-40.23	0.619	64	23.5456	-37.8679
17	21.784	34.8391	41	-40.3153	-3.0441	65	26.5943	-35.836
18	18.4929	36.4474	42	-40.0877	-6.7034	66	29.4532	-33.5437
19	15.076	37.768	43	-39.5085	-10.3223	67	32.0919	-31.0001
20	11.5588	38.7906	44	-38.5986	-13.8697	68	34.4863	-28.2272
21	7.9659	39.5074	45	-37.4305	-17.3431	69	36.6572	-25.276
22	4.3209	39.8825	46	-35.948	-20.6938	70	38.5451	-22.135
23	0.6577	39.9423	47	-34.1934	-23.9129	71	40.1628	-18.8481
24	-2.9971	39.7134	48	-32.1616	-26.9665			

表 A.1 验证数据表

A.5 异常数据的识别与剔除

根据拉依达准则,判断各测量点是否大于 3 倍标准差,如大于,则为异常数据,剔除并重新计算,直至剔除所有异常数据。

附录 B 棱柱形储罐横截面测量数据处理方法

对于某一横截面测量的点其坐标值为 (x_{ij},y_{ij}) ,i=1,2,3,...n为点的序号,j=1,2,3,...n为边的序号。

根据最小二乘法原理拟合第;条边,该边的直线方程为:

$$y_{j} = a_{j} + b_{j}x_{j} \tag{B.1}$$

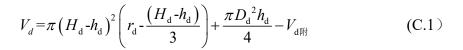
式中 a_i 、 b_i 的最佳估计值为:

$$\begin{cases}
 a_{j} = \frac{\left(\sum x_{ij}^{2}\right)\left(\sum y_{ij}\right) - \left(\sum x_{ij}\right)\left(\sum x_{ij}y_{ij}\right)}{N\left(\sum x_{ij}^{2}\right) - \left(\sum x_{ij}\right)^{2}} \\
 b_{j} = \frac{N\left(\sum x_{ij}y_{ij}\right)\left(\sum y_{ij}\right) - \left(\sum x_{ij}\right)\left(\sum x_{ij}y_{ij}\right)}{N\left(\sum x_{ij}^{2}\right) - \left(\sum x_{ij}\right)^{2}}
\end{cases} (B.2)$$

对于相邻两边 $y_j = a_j + b_j x_j$ 、 $y_{j+1} = a_{j+1} + b_{j+1} x_{j+1}$ 其交点 (x_k, y_k) 为:

$$\begin{cases} x_{k} = \frac{a_{j} - a_{j+1}}{b_{j+1} - b_{j}} \\ y_{k} = \frac{a_{j} b_{j+1} - a_{j+1} b_{j}}{b_{j+1} - b_{j}} \end{cases}$$
(B.3)

该横截面面积采用三角面积积分法计算,将相邻两点 (x_k,y_k) 、 (x_{k+1},y_{k+1}) 与(0,0)组成一个三角形,其面积为(其值可能为正,可能为负):


$$S_{\Delta} = \frac{1}{2} \left(x_{k} \times y_{k+1} - x_{k+1} \times y_{k} \right)$$
 (B.4)

将所有三角形进行计算并累加,得到横截面面积为:

$$S = \left| \frac{1}{2} \sum_{k=0}^{n} \left(x_{k} \times y_{k+1} - x_{k+1} \times y_{k} \right) \right|$$
 (B.5)

附录 C 穹顶测量及数据处理方法

如图 C.1 所示,通过对测量穹顶内表面半径 $r_{\rm d}$ 、外罐内直径 $D_{\rm d}$ 、吊顶上表面与穹顶内表面最高点距离 $H_{\rm d}$ 、吊顶以上圆直筒高度 $h_{\rm d}$,按式(C.1)计算穹顶体积,扣除各附件(如膨胀珍珠岩、玻璃纤维毡、吊顶吊杆等)体积 $V_{\rm dm}$ 后,即为穹顶可容纳气相的体积 $V_{\rm d}$ 。

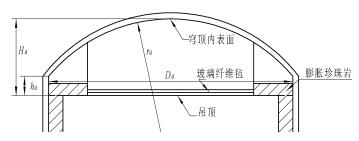


图 C.1 穹顶测量示意图

C.1 穹顶内表面半径 r_a 的测量与计算

采用全站仪或三维激光扫描仪测量穹顶内表面各点坐标。采用全站仪测试时,测量点为穹顶内表面各同心圆均匀分布的点,同心圆根据全站仪测量中心至穹顶内表面最高点和穹顶内表面最低点的夹角 8 等分划分,每等分角对应一个同心圆,每个同心圆取不少于 16 点作为测量点。

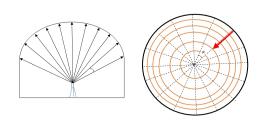


图 C.2 全站仪测量穹顶内表面各点示意图

采用最小二乘法对球面进行拟合计算穹顶内表面半径 $r_{\rm d}$,在三维坐标系中,球面方程可表示为:

$$(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2 = r_d^2$$
 (C.2)

对于最小二乘法拟合球即求解令下式(C.2)H最小时 (x_0, y_0, z_0, r_d) 的值。

$$H(x_0, y_0, z_0, r_d) = \sum_{i=1}^{N} ((x_i - x_0)^2 + (y_i - y_0)^2 + (z_i - z_0)^2 - r_d^2)^2$$
 (C.3)

求偏导后简化得式(C.3)(C.4)。

$$\sum_{i=1}^{N} \left(\left(x_i - x_0 \right)^2 + \left(y_i - y_0 \right)^2 + \left(z_i - z_0 \right)^2 - r_d^2 \right) = 0$$
 (C.4)

$$\sum_{i=1}^{N} x_{i} \left(\left(x_{i} - x_{0} \right)^{2} + \left(y_{i} - y_{0} \right)^{2} + \left(z_{i} - z_{0} \right)^{2} - r_{d}^{2} \right) = 0$$

$$\sum_{i=1}^{N} y_{i} \left(\left(x_{i} - x_{0} \right)^{2} + \left(y_{i} - y_{0} \right)^{2} + \left(z_{i} - z_{0} \right)^{2} - r_{d}^{2} \right) = 0$$

$$\sum_{i=1}^{N} z_{i} \left(\left(x_{i} - x_{0} \right)^{2} + \left(y_{i} - y_{0} \right)^{2} + \left(z_{i} - z_{0} \right)^{2} - r_{d}^{2} \right) = 0$$
(C.5)

令:

$$u_{i} = x_{i} - \overline{x}$$

$$v_{i} = y_{i} - \overline{y}$$

$$w_{i} = z_{i} - \overline{z}$$
(C.6)

代入(C.3)(C.4)后简化得:

$$(\sum u_i^2)u_0 + (\sum u_i v_i)v_0 + (\sum u_i w_i)w_0 = \frac{\sum (u_i^3 + u_i v_i^2 + u_i w_i^2)}{2}$$

$$(\sum u_i v_i)u_0 + (\sum v_i^2)v_0 + (\sum v_i w_i)w_0 = \frac{\sum (u_i^2 v_i + v_i^3 + v_i w_i^2)}{2}$$

$$(\sum u_i w_i)u_0 + (\sum v_i w_i)v_0 + (\sum w_i^2)w_0 = \frac{\sum (u_i^2 w_i + v_i^2 w_i + w_i^3)}{2}$$

$$(C.7)$$

求解后得:

$$r_{d} = \sqrt{\frac{\sum_{i=1}^{N} \left(\left(u_{i} - u_{0} \right)^{2} + \left(v_{i} - v_{0} \right)^{2} + \left(w_{i} - w_{0} \right)^{2} \right)}{N}}$$
 (C.8)

C.2 外罐内直径 D_a 的测量与计算

参考 7.1.1 获得测量数据,参考附录 A 计算外罐内直径 D_a 。

C.3 吊顶上表面与穹顶内表面最高点距离 H_d 的测量与计算

采用全站仪或三维激光扫描仪测量获取穹顶内表面最高点坐标和吊顶上表面平均坐标(测量吊顶上表面不少于 36 个点的坐标取平均值),两者高程坐标的差值即为吊顶上表面与穹顶内表面最高点距离 $H_{\rm d}$ 。

C.4 吊顶以上圆直筒高度 h_d 的测量与计算

采用全站仪或三维激光扫描仪测量获取穹顶内表面与外罐内表面交界处坐标平均值(测量交界处不少于 36 个点的坐标取平均值)和吊顶上表面平均坐标(测量吊顶上表面不少于 36 个点的坐标取平均值),两者高程坐标的差值即为吊顶以上圆直筒高度 h_a 。

C.5 吊顶以上附件 V_{dM} 的测量与计算

测量吊顶以上与穹顶内表面以下所有附件体积,如膨胀珍珠岩、玻璃纤维毡、吊顶吊杆等,附件一般具有规则的几何形状,测量出其几何尺寸,即可求出其体积,对于不能实际测量的附件,也可采用竣工图纸标注的数据。

附录 D 校准记录参考格式

液化天然气立式储罐校准记录

申校单位:			校准依据:	
罐号:			储罐类型:	
环境温度:			标称容量:	
罐体材质:				
	•	校准	主使用的标准器	
标准器名称	型号 设备编号		证书编号	有效期至
			计算结果	
倾斜角: 内罐总容量: 底量:		测量不确定 死量:	定度:	

校准员: 核验员: 花录员: 校准日期: 年 月 日

第 页 共 页

液化天然气立式储罐罐体校准记录(单位: mm)

罐号: 校准证书编号:

四十二			四十二		□水平圆周半径 □棱柱横截面 □各分层值 平均值 □1/4 值、3/4 值		
圏板 序号	圈板高	分层高	圏板 厚度	圏板温度			温度修正至℃

 校准员:
 核验员:
 记录员:
 校准日期:
 年 月 日

 第 页 共 页

液化天然气立式储罐底部校准记录(单位: mm)

罐号: 校准证书编号:

计量基准点标高				计量基准	ŧ点标高 - :	边部标高	平均值=		
圆序号 半径	0	I IX		III XI	IV XII	V XIII	VI XIV	VII/ XV	VIII XVI
距离 序号	0								
0-1									
0-2									
0-3									
0-4									
0-5									
0-6									
0-7									
0-8									
0-9									
0-10									
0-11									
0-12									
0-13									
0-14									
0-15									
0-16									

校准员: 核验员: 记录员: 校准日期: 年 月 日

第 页 共 页

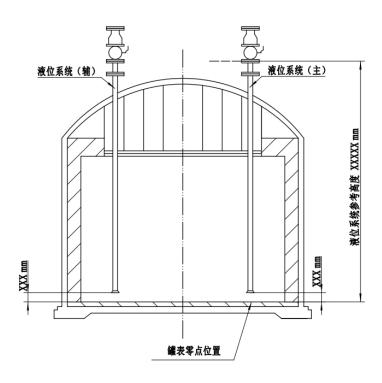
液化天然气立式储罐罐内附件与液位系统校准记录(单位: mm)

罐号: 校准证书编号:

附件	长度	宽 度	直径	数量	总体积(L)	起点	止点
游台江二辛网							
液位计示意图 与测量结果							
						测量	计算值
						$r_{ m d}$	
						D_{d}	
穹顶测量						H_{d}	
						$h_{ m d}$	
						$V_{ m d}$ 附	

校准员: 核验员: 花雅日期: 年 月 日

第 页 共 页


附录 E 校准证书内页格式

校准结果及说明

1.校准结果:	_℃时内罐总	容量:	m³,相对	扩展不确定	度 <u>(k=</u> 2	<u>2)</u> ;°C
时罐体弧顶部分	分总容量:	$_{-}$ m^3 \circ				
2.此罐容表以液位	过计	对应的罐底点	(为基准点,	当液面达到	测量零点时	计,对应的体
积为死量:	$_{m}^{3}$ $_{\circ}$					
3.后附容量表共_	页,容	量表的对应	温度为:	°C。		
4.容量表的液位高	5度由液位计	以读取,液位	系统参考高	度如附图所	示,使用液	反位计的读数
查表前必须根据	居罐内温度修	正到实际高度	芝。			
5.静压力容量修正	E表为液体密度	度为g/	cm³的静压。	力增大值,在	E使用时, 若	·液体密度变
化,应将相应的	的静压力容量	修正值乘于汽	夜体实际 密质	度与g	/cm³的比值	[,得其修正
值 $\Delta V_{ extsf{P}}$ 。						
6.为了保证罐容量	量测量不确定原	度达到给出的	」相对扩展不	不确定度 $U_{ m rel}$,所排出或	注注入的最少
液体体积不应力	小于最小测量	容量。罐的最	人小测量容量	b 为液高 Δh	$U_{ m rel}$ 所对应	ž的容量表容
积(Δh 为液位	过计最大允许证	吴差)。				
7.罐大修或严重变	ど形后请重新 ほ	申请校准。				
8.计算示例:	1			<i>(</i>)	- // \P =	
假设罐内液 [©] A:液体计算	本为密度	_kg/L,温度 <i>t</i>	=°C,;	攸位m	m,气体温度	美 t _g =°C
A:	(美田工画+	ナエス 心女 左蒔 \				
	E表中,根据			本丰可但		I/_ —
静压力修正值4		71又7立71	面	旦仪刊付4	日里水小田	v в,
(2) 温度修正:	Δ <i>γ</i> P—。					
	,对应的	的线性执胀系	、数 为 a=	,温度修	正后罐内滴	休休积为,
$V_{\rm I}=$					正/口 叫在 1 1 1 人	TT TT 1010 3 •
注: 如果钢板的约		是线性的, 见	则按照提供的	 り膨胀系数分	↑段修正。	
B: 气体计算						
(1) 罐柱体部分	气体计算					
内罐总容量	<i>V</i>					
罐柱体部分學	气体体积=	L				
(2) 罐穹顶部分	气体计算					
罐穹顶部分气	气体体积=	L				

罐内液体气体体积为 V_g =____L

9.附图

注: 附图所标注的为 20℃时的尺寸, 使用液位计的读数查表前必须根据设置液位计基准高度以及根据罐内温度修正到实际高度。

附录 F 容量表参考格式(一)

静压力容量修正表

罐号: **

高度(m)					

证书编号: ****** 校准单位: ********** 校准日期: ****年**月**日 共*页 第*页

毫 米 容 量 表

罐号: **

高度 (mm)	容量(L)	高度 (mm)	容量(L)	高度 (mm)	容量(L)	高度 (mm)	容量(L)
(11111)		(111111)		(111111)		(111111)	

证书编号: ***** 校准单位: ********* 校准日期: ****年**月**日 共*页 第*页

附录 G 容量表参考格式(二)

分 米 容 量 表

罐号: **

高度 (dm)	容量(L)	高度 (dm)	容量(L)	高度 (dm)	容量(L)	高度 (dm)	容量(L)

证书编号: ****** 校准单位: *********** 校准日期: ****年**月**日 共*页 第*页

区间容量表

罐号: **

高度	容量	高度	容量	起止点	高度	容量	高度	容量
(cm)	(L)	(mm)	(L)	(dm)	(cm)	(L)	(mm)	(L)
1		1			1		1	
2		2			2		2	
3		3			3		3	
4		4			4		4	
5		5			5		5	
6		6			6		6	
7		7			7		7	
8		8			8		8	
9		9			9		9	
1		1			1		1	
2		2			2		2	
3		3			3		3	
4		4			4		4	
5		5			5		5	
6		6			6		6	
7		7			7		7	
8		8			8		8	
9		9			9		9	
	(cm) 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8	(cm) (L) 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 9 1 8 9	(cm) (L) (mm) 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9	(cm) (L) (mm) (L) 1 1 1 2 2 3 3 3 4 4 4 4 5 5 6 6 6 7 8 8 9 9 9 1 1 1 2 3 3 3 4 4 4 5 5 6 6 6 7 7 7 8 8 8 9 9 9 9	(cm) (L) (mm) (L) (dm) 1 1 1 2 2 3 3 4 4 4 4 5 5 6 6 6 6 7 7 8 8 8 9 9 1 1 1 2 2 3 3 4 4 4 5 5 6 6 6 7 7 8 8 8 9	(cm) (L) (dm) (cm) 1 1 1 2 2 2 3 3 4 4 4 4 5 5 6 6 6 7 8 8 9 9 9 1 1 1 1 2 2 2 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8 9 9 9 9	(cm) (L) (dm) (em) (L) 1	(cm) (L) (dm) (cm) (L) (mm) 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 8

证书编号: ****** 校准单位: ********* 校准日期: ****年**月**日

共*页 第*页

底 量 容 量 表

罐号: **

mm	0	1	2	3	4	5	6	7	8	9
0										
1										
2										
3										
4										
5										
6										
7										
8										
9										
10										
11										
12										
13										
14										
15										
16										
17										
18										
19										
20										
21										
22										

证书编号: ***** 校准单位: ******** 校准日期: ****年**月**日

共*页 第*页

静压力容量修正表

罐号: **

dm m	0	1	2	3	4	5	6	7	8	9
0										
1										
2										
3										
4										
5										
6										
7										
8										
9										
10										
11										
12										
13										
14										

证书编号: ****** 校准单位: ******** 校准日期: ****年**月**日

共*页 第*页